Abstract

Herein, a metal-organic framework (MOF), {[(Me2NH2)4][Cd(H2O)6][Cd18(TrZ)12(TPD)15(DMF)6]}n (denoted as JXNU-18, TrZ = triazolate), constructed from the unique cucurbituril-shaped Cd18(TrZ)12 secondary building units bridged by 2,5-thiophenedicarboxylic (TPD2-) ligands, is presented. The formation of the cucurbituril-shaped Cd18(TrZ)12 unit is unprecedented, demonstrating the geometric compatibility of the organic linkers and the coordination configurations of the cadmium atoms. Each Cd18(TrZ)12 unit is connected to eight neighboring Cd18(TrZ)12 units through 30 TPD2- linkers, affording the three-dimensional structure of JXNU-18. More interesting is that JXNU-18 displays an efficient C2H2/CO2 separation ability, as revealed by the gas adsorption experiments and dynamic gas breakthrough experiments, which afford insights into the potential applications of JXNU-18 in gas separation. The tubular pores composed of two Cd18(TrZ)12 units bridged by six 2,5-thiophenedicarboxylic linkers provide the suitable pore space for C2H2 trapping, as unveiled by computational simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call