Abstract

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have raised serious public health concerns because of their potential adverse effects in humans as revealed by toxicological and epidemiological research. However, routine monitoring of PFASs is still challenging due to their trace levels in various environmental and biological matrices. In this study, magnetic composite materials based on iron (II, III) oxide (Fe3O4) with surface functionalization by cucurbit(n)uril (CB(n)) (Fe3O4@CB(n)) (n = 6, 7, 8), were prepared and evaluated as new adsorbents for the magnetic solid-phase extraction of nine PFASs in lake water, tap water and fish muscle samples. The Fe3O4@CB(n) was characterized to examine their surface morphologies, sizes magnetism and thermal stability. Featuring good aqueous solution dispersibility, the macrocyclic structure of Fe3O4@CB(n) was also endowed with strong host-guest interactions, allowing extraction and enrichment capability towards the PFASs in complex matrices. MSPE using Fe3O4@CB(7) combination with ultra-high performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry, gave satisfactory quantitative analytical performance with low limits of detection of 0.004–0.04 µg L−1 and limits of quantification of 0.005–0.1 µg L−1, linearities ranging from 0.01 to 10 µg L−1 with high coefficients of determination (R2 ≥ 0.993), and enrichment factors (15–76) for the nine target PFASs. The method proved to be effective for the enrichment and analysis of trace levels of PFASs in genuine environmental water and fish muscle samples, indicating that Fe3O4@CB(7) has promising applicability as an adsorbent for these contaminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.