Abstract

Cucurbitacin E (CuE), a triterpenoid compound isolated from Cucurbitaceae plants, possesses a wide range of biological activities including anti-inflammatory properties. The present study aimed to investigate the anti-inflammatory effect of CuE and the underlying mechanism of action. The anti-inflammatory effect of CuE was evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Cell proliferation was assessed using a modified MTT assay. Cell cycle distribution was analyzed by propidium iodide staining. The actin cytoskeleton was examined by immunofluorescent staining. The expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β was determined by intracellular cytokine staining. G-actin level and nuclear factor (NF)-κB nuclear translocation were detected by immunoblotting. CuE inhibited cell proliferation and induced cell cycle arrest at G2/M phase in RAW 264.7 cells. CuE also suppressed LPS-induced cell spreading and pseudopodia formation. These effects were associated with decreased G-actin level and severe actin aggregation. Moreover, CuE significantly inhibited both TNF-α and IL-1β production in LPS-stimulated RAW 264.7 cells. This was likely mediated by suppressing LPS-induced nuclear translocation of NF-κB, a critical transcription factor responsible for pro-inflammatory cytokine expression. CuE displayed anti-inflammatory effects through suppression of NF-κB nuclear translocation leading to a decreased expression of TNF-α and IL-1β in LPS-stimulated RAW 264.7 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.