Abstract
We have introduced a novel water-soluble two-photon photoinitiator based on the host-guest interaction between 3,6-bis[2-(1-methyl-pyridinium)vinyl]-9-pentyl-carbazole diiodide (BMVPC) and cucurbit[7]uril (CB7) because most of the commercial photoinitiators have poor two-photon initiating efficiency in aqueous solutions. The binding ratio of BMVPC and CB7 was determined as 1:1 by isothermal titration calorimetry and quantum chemical calculation. The formation of the host-guest complex increases the two-photon absorption cross-section about five times, and improves the water solubility required as the photoinitiator for hydrogel fabrication. The BMVPC-CB7 inclusion complex was used as the one-component photoinitiator, and the polyethylene glycol diacrylate with promising biocompatibility was used as the hydrogel monomer to form the aqueous-phase photoresist system applied to two-photon polymerization microfabrication. A relatively low laser threshold of 4.5 mW, a high fabricating resolution of 180 nm, and the true three-dimensional (3D) fabricating capability in the aqueous solution have been obtained by using the as-prepared photoresist system. Finally, 3D engineering hydrogel scaffold microstructures with low toxicity and good biocompatibility have been fabricated and cocultured with living HeLa cells, which demonstrates the potential for further application in tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.