Abstract

The macrocyclic host cucurbit[7]uril forms very stable complexes with the diprotonated (K(CB[7])(1) = 1.8 x 10(8) dm(3) mol(-1)), monoprotonated (K(CB[7])(2) = 1.0 x 10(7) dm(3) mol(-1)), and neutral (K(CB[7])(3) = 1.2 x 10(3) dm(3) mol(-1)) forms of the histamine H(2)-receptor antagonist ranitidine in aqueous solution. The complexation behaviour was investigated using (1)H NMR and UV-visible spectroscopy as a function of pH and the pK(a) values of the guest were observed to increase (DeltapK(a1) = 1.5 and DeltapK(a2) = 1.6) upon host-guest complex formation. The energy-minimized structures of the host-guest complexes with the cationic guests were determined and provide agreement with the NMR results indicating the location of the CB[7] over the central portion of the guest. The inclusion of the monoprotonated form of ranitidine slows the normally rapid (E)-(Z) exchange process and generates a preference for the (Z) isomer. The formation of the CB[7] host-guest complex greatly increases the thermal stability of ranitidine in acidic aqueous solution at 50 degrees C, but has no effect on its photochemical reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.