Abstract

AbstractSupramolecular noncovalent interactions are widely found in natural adhesion phenomena to control macroscopic adhesion and accomplish a variety of complex functions. Such supramolecular adhesives could impart the interfaces with intriguing properties, e.g., energy dissipation and self‐healing, on account of their dynamic nature. Here, we demonstrate that cucurbit[8]uril (CB[8])‐based supramolecular hydrogel networks can function as dynamic adhesives for diverse nonporous (e.g., glass, stainless steel, aluminum, copper, and titanium) and porous substrates (wood and bone). Without any surface prefunctionalization or introduction of curing agents, these CB[8] hydrogel networks can be readily applied by curing around the softening temperature, forming a tough and healable adhesive interlayer. The ability to fabricate a robust sandwich model consisting of substrate–CB[8] hydrogel network–substrate enables a number of applications including stretchable and wearable electronics, hybrid systems for biomedical devices or tissue/bone regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.