Abstract

Mutants of the Cucumber mosaic virus (CMV) movement protein (MP) were generated and analyzed for their effects on virus movement and pathogenicity in vivo. Similar to the wild-type MP, mutants M1, M2, and M3, promoted virus movement in eight plant species. Mutant M3 showed some differences in pathogenicity in one host species. Mutant M8 showed some host-specific alterations in movement in two hypersensitive hosts of CMV. Mutant M9 showed altered pathogenicity on three hosts and was temperature sensitive for long-distance movement, demonstrating that cell-to-cell and long-distance movement are distinct movement functions for CMV. Four mutants (M4, M5, M6, and M7) were debilitated from movement in all hosts tested. Mutants M4, M5, and M6 could be complemented in trans by the wild-type MP expressed transgenically, although not by each other or by mutant M9 (at the restrictive temperature). Mutant M7 showed an inability to be complemented in trans. From these mutants, different aspects of the CMV movement process could be defined and specific roles for particular sequence domains assigned. The broader implications of these functions are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call