Abstract

In this report, a facile synthetic route is adopted for typically designing a hybrid electrocatalyst containing boron, nitrogen dual-doped reduced graphene oxide (B,N-rGO) and thiospinel CuCo2S4 (CuCo2S4@B,N-rGO). The electrocatalytic activity of the hybrid catalyst is tested with respect to oxygen evolution (OER) and oxygen reduction (ORR) reactions in alkali. Physicochemical characterizations confirm the unique formation of a reduced graphene oxide–non-noble-metal sulfide hybrid. Electrochemical evaluation by cyclic voltammetry (CV) and linear-sweep voltammetry (LSV) reveals that the CuCo2S4@B,N-rGO hybrid possesses enhanced ORR and OER activity compared to the B,N-rGO-free CuCo2S4 catalyst. The synthesized CuCo2S4@B,N-rGO hybrid demonstrates remarkable enhancement in catalytic performance with an improved onset potential (1.50 and 0.88 V) and low Tafel slope (112 and 73 mV dec–1) for both OER and ORR processes, respectively. In addition, the catalyst exhibits a diminutive potential difference (0.81 V) between the potential corresponding to the 10 mA cm–2 current density for OER and the half-wave potential for ORR. The superior catalytic activity and high durability of the hybrid material may be attributed to the synergistic effect arising from the metal sulfide and dual-doped reduced graphene oxide. The present study illuminates the possibility of using the dual-doped graphene oxide and metal sulfide hybrid as a competent bifunctional cathode catalyst for renewable energy application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.