Abstract

Antibacterial strategies based on reactive oxygen species (ROS) have opened up a new avenue for overcoming the great challenges of antibiotics topic including lack of broad-spectrum antibiotics and the emergence of super-resistant bacteria. Herein, we leveraged a strategy of constructing synergistic catalytic active sites to develop a simple yet efficient Fenton-like active nanocomposite, and investigated its catalysis mechanism and antibacterial performance thoroughly. This strategy provides a new direction for boosting the catalytic activity of nanocomposite catalysts for wide application. Specifically, by uniformly loading copper oxide and ceria onto the surface of silica nanocapsules (SiO2 NCs), we fabricated a bimetallic oxide nanocomposite Cu0.75Ce0.62O2@SiO2 NC, which performed superior Fenton-like capability in a wide pH range without additional exogenetic hydrogen peroxide (H2O2). Such excellent catalytic activity was originated from the charge interaction between the two metal oxide components, where formation of Cu+ and oxygen vacancies (OVs) was mutually reinforcing, resulting in a synergistic effect to produce H2O2 and catalyze the generation of •OH under the slight acid condition (pH = 6.0). In view of the outstanding Fenton-like activity, the Cu0.75Ce0.62O2@SiO2 NC was employed in antimicrobial testing, which demonstrated exceptional high in vitro antimicrobial efficacy against both the S. aureus and E. coli in a neutral environment (pH = 7.4). The excellent performance of the bimetallic nanocomposite Cu0.75Ce0.62O2@SiO2 NC, including its facile and mild preparation, high water-solubility and stability, superior catalytic and antimicrobial performances, manifests a promising broad-spectrum antibiotic that can be anticipated to deal with the contamination of the environment by bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call