Abstract

Aims: To improve the dissolution of indomethacin through developing liquid indomethacin loaded cubosomes dispersion for oral delivery.
 Methodology: Glyceryl monooleate based indomethacin loaded cubosomes dispersion were prepared using Taguchi design to study the effect of indomethacin to the disperse phase ratio and poloxamer 407 (PLX%) concentrations on the particle size and entrapment efficiency (%EE). Furthermore, in vitro release in phosphate buffer (pH 6.8), and morphology were investigated. Also, the stability of indomethacin loaded cubosomes dispersions was examined after 6 months storage at 25°C in the dark.
 Results: The prepared indomethacin cubosomes dispersions were in the nanoscale (184.53±0.7 to 261.33±0.8 nm) with reasonable %EE (49.30±2.6 to 95.55±3.4 %). Moreover, a biphasic release profile was predominant for all formulations, up to 50% of payload released after 2h followed by a second continuous sustained release phase over 24h. The kinetics of indomethacin release was best explained by Higuchi model and the mechanism of drug release from these cubosomes dispersions was by fickian diffusion mechanism. In general, the indomethacin loaded cubosomes dispersions were stable after 6 months storage at 25°C in the dark.
 Conclusion: Indomethacin loaded cubosomes dispersions proved to be a successful platform to encapsulate and enhance the release of indomethacin with a good stability profile over 6 months.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.