Abstract
Cubosomes are the nanoparticles of bicontinuous, lyotropic cubic phases, comprised of curved lipid bilayers organized into a three-dimensional honeycomb (cavernous) like structures separating two internal aqueous channels and large interfacial area. Cubic phases are optically isotropic, very viscous, and solid-like (crystalline) with cubic crystallographic symmetry. They can encapsulate hydrophilic, hydrophobic and amphiphilic drug substances, which are able to target and control the release of the bioactive agent. The cosmetic industry has made progress in the development of products to overcome skin as a barrier and deliver the actives through the skin effectively. Drug incorporated cubosomes shows some unique advantageous like, protection from chemical and physiological degradation, in vivo drug release in a controlled manner and improving the bioavailability of drug while reducing the side effect. Cubosomes are pharmacologically inactive, non-irritant, non-toxic, effective, and cosmetically acceptable. Topical drug delivery can deliver drugs selectively to the specific site; this avoids fluctuations of drug levels and improves patient compliance and suitable local and systemic therapeutic effects. Cubosomal topical drug formulation shows outstanding potential advantages for their controlled and sustained drug delivery. This review article mainly focuses on cosmetic and topical applications of cubosomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pharmacy and Pharmaceutical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.