Abstract

We analyze a useful process able to safeguard the fundamental soliton light pulse stability in a strongly perturbed environment by the fourth-order dispersion (FOD). This optical pulse propagation is described by the nonlinear Schrödinger equation (NLSE) with cubic–quintic saturable nonlinearities. Some pulse parameters, called collective variables (CVs) such as amplitude, temporal position, width, chirp, frequency shift and constant phase are obtained analytically. Numerical evolution of CVs and their stability are studied under a typical example to verify our analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call