Abstract

We construct a model structure on the category of cubical sets with connections whose cofibrations are the monomorphisms and whose fibrant objects are defined by the right lifting property with respect to inner open boxes, the cubical analogue of inner horns. We show that this model structure is Quillen equivalent to the Joyal model structure on simplicial sets via the triangulation functor. As an application, we show that cubical quasicategories admit a convenient notion of a mapping space, which we use to characterize the weak equivalences between fibrant objects in our model structure as DK-equivalences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.