Abstract

A graph is said to be vertex-transitive non-Cayley if its full automorphism group acts transitively on its vertices and contains no subgroups acting regularly on its vertices. In this paper, a complete classification of cubic vertex-transitive non-Cayley graphs of order 12p, where p is a prime, is given. As a result, there are 11 sporadic and one infinite family of such graphs, of which the sporadic ones occur when p equals 5, 7 or 17, and the infinite family exists if and only if p ≡ 1 (mod 4), and in this family there is a unique graph for a given order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.