Abstract

The Tannakian formalism allows to attach to any subvariety of an abelian variety an algebraic group in a natural way. The arising groups are closely related to moduli questions such as the Schottky problem, but their geometric interpretation is still mysterious. We show that for the theta divisor on the intermediate Jacobian of a cubic threefold, the Tannaka group is an exceptional group of type E_6. This is the first known exceptional case, and it suggests a connection with the monodromy of the Gauss map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.