Abstract

A sublattice of the three-dimensional integer lattice Z3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {Z}}^3$$\\end{document} is called cubic sublattice if there exists a basis of the sublattice whose elements are pairwise orthogonal and of equal lengths. We show that for an integer vector v∈Z3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extbf{v}}\\in {\\mathbb {Z}}^3$$\\end{document} whose squared length is divisible by d2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d^2$$\\end{document}, there exists a cubic sublattice containing v\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ extbf{v}}$$\\end{document} with edge length d. This improves one of the main result of a paper of Goswick et al. (J. Number Theory 132(1), 37–53 (2012)), where similar theorem was proved by using the decomposition theory of Hurwitz integral quaternions. We give an elementary proof heavily using cross product. This method allows us to characterize the cubic sublattices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call