Abstract

The cubic S/N co-doped TiO2 (TNSx, x is the calcination temperature) photocatalysts with rich oxygen vacancies were obtained by high temperature calcination of sulfur powder and titanium-based MOFs NH2-MIL-125 for the photocatalytic removal of gaseous formaldehyde (a volatile organic compound). Among the obtained catalysts, the presence of oxygen vacancies restricted photogenerated electron and holes recombination. 98.00% removal of gaseous formaldehyde in 150 min could be achieved over TNS600 by xenon lamp. The removal efficiency for formaldehyde was well retained for five cycle experiment. The results from PL, TRPL and EIS revealed that TNS600 had the best separation efficiency of photogenerated electrons and holes, and the enhanced charge separation led to a significant increase in photocatalytic activity. The photocatalytic oxidation mechanism indicated that the •OH and •O2− radicals were mainly involved in the efficient elimination of gaseous formaldehyde and were able to mineralize formaldehyde to H2O and CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.