Abstract

The cubic nonlinearity of a graphene-oxide monolayer was characterized through open and closed z-scan experiments, using a nano-second laser operating at a 10 Hz repetition rate and featuring a Gaussian spatial beam profile. The open z-scan revealed a reverse saturable absorption, indicating a positive nonlinear absorption coefficient, while the closed z-scan displayed valley-peak traces, indicative of positive nonlinear refraction. This observation suggests that, under the given excitation wavelength, a two-photon or two-step excitation process occurs due to the increased absorption in both the lower visible and upper UV wavelength regions. This finding implies that graphene oxide exhibits a higher excited-state absorption cross-section compared to its ground state. The resulting nonlinear absorption and nonlinear refraction coefficients were estimated to be approximately ~2.62 × 10-8 m/W and 3.9 × 10-15 m2/W, respectively. Additionally, this study sheds light on the interplay between nonlinear absorption and nonlinear refraction traces, providing valuable insights into the material's optical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call