Abstract

Nanosized sodium bismuth perovskite titanate (NBT) was synthesized and first used as the electrochemical immune sensing platform for the sensitive detection of carcinoembryonic antigen (CEA). Gold nanoparticles (Au NPs) grew on the surface of NBT through forming Au-N bond to obtain Au@NBT, and a label-free electrochemical immunosensor was proposed using Au@NBT as an immunosensing recognizer towards CEA. The well-ordered crystal structure of NBT was not changed at all after the modification of Au NPs outside, but significantly improved the conductivity, catalytic activity, and biocompatibility of the Au@NBT-modified electrode. The unique cubic crystal nanostructure of NBT offered a large active area for both Au NP modification and the subsequent immobilization of biomolecules over the electrode surface, triggering the effective generation of promising properties of the proposed Au@NBT-based electrochemical immunosensor. As expected, favorable detection performances were achieved using this immunosensor towards CEA detection, where a good linear relationship between the current response and CEA concentration was obtained in the concentration range 10fg mL-1 to 100 ng mL-1 with a low detection limit (LOD) of 13.17fg mL-1. Also, the significantly enhanced selectivity, and stability guaranteed the promising electrochemical properties of this immunosensor. Furthermore, the analysis of real serum samples verified the high feasibility of this new method in clinical CEA detection. This work opens a new window for the application of nanoperovskite in the early detection of CEA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.