Abstract

Aqueous zinc ion batteries (A-ZIBs) have been used as new alternative batteries for grid-scale electrochemical energy storage because of their low cost and environmental protection. Finding a suitable and economical cathode material, which is needed to achieve high energy density and long cycle stability, is one of the most important and arduous challenges at the present stage. Potassium manganese hexacyanoferrate (KMHCF) is a kind of Prussian blue analogue. It has the advantages of a large 3D frame structure that can accommodate the insertion/extraction of zinc ions, and is nontoxic, safe, and easy to prepare. However, regularly synthesized KMHCF has higher water and crystal defects, which reduce the possibility of zinc ions' insertion/extraction, and subsequently the discharge capacity and cycling stability. In this work, a KMHCF material with less water and low defects was obtained by adding polyvinylpyrrolidone during the synthesis process to control the reaction process. The KMHCF serves as the cathode of A-ZIBs and exhibits an excellent electrochemical performance providing a specific capacity of 140 mA h g-1 for the initial cycle at a current density of 100 mA g-1 (1 C). In particular, it can maintain a reversible capacity of 85 mA h g-1, even after 400 cycles at 1 C. Moreover, unlike the traditional zinc storage mechanism of A-ZIBs, we found that the KMHCF electrode undergoes a phase transition process when the KMHCF electrode was activated by a small current density, which is attributed to part of the Mn on the lattice site being replaced by Zn, thus forming a new stable phase to participate in the subsequent electrochemical reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.