Abstract

Plasmonic nanostructures having porous morphology have attracted a great deal of attention in catalysis because of high surface-to-volume ratio, better surface reactivity, and availability of various structural features. We report the synthesis, immobilization, and kinetic analysis of cubic gold nanorattles (AuNRTs) comprising a solid octahedral core surrounded by a thin porous cube-shaped gold shell toward the reduction of p-nitrophenol (an environmental pollutant) and degradation of organic dyes (Congo red and methylene blue) as model systems. Kinetic investigation of our study showed that AuNRTs are an excellent catalyst compared with solid silver nanocube containing an octahedral gold core (AuOCT@Ag) and gold nanospheres (AuNSs), which could be attributed to the porous structure of nanorattles with three available surfaces: outer and inner walls and inner core for catalysis. A detailed analysis of the different kinetic and thermodynamic parameters revealed that AuNRTs have the highest reaction rate co...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call