Abstract

The local structure of a supported active metal plays a vital role in determining the desired product's selectivity in heterogeneous catalysis. Herein, we have developed a simple protocol for the synthesis of Cu doped on cubic ZrO2 mixed metal oxide catalysts and used it for the selective oxidation of various functional groups. The catalyst was synthesized by varying the wt.% of Cu (1–20%) on ZrO2 by co-precipitation, followed by hydrothermal treatment. The X-ray diffraction pattern of the catalysts confirmed the formation of the cubic phase of ZrO2, and the growth of CuO occurred along the (111) plane. The microscopy analysis revealed the uniform distribution of Cu on the ZrO2 surface, while XPS analysis confirmed the presence of copper in the +2 oxidation state. The synthesized catalyst with 2 wt% loading of Cu on ZrO2 showed excellent liquid-phase oxidation properties and gave good to best conversion of active methyl groups, alcohols, and amines with high selectivities to corresponding ketones, aldehydes, and amides, respectively, under milder reaction conditions. Furthermore, the synthesized catalyst showed a broader substrate scope for the various substituted active methyl groups, alcohols, and amines with good conversion and selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call