Abstract

PurposeThe purpose of this paper is to simulate numerical solutions of nonlinear Burgers' equation with two well‐known problems in order to verify the accuracy of the cubic B‐spline differential quadrature methods.Design/methodology/approachCubic B‐spline differential quadrature methods have been used to discretize the Burgers' equation in space and the resultant ordinary equation system is integrated via Runge‐Kutta method of order four in time. Numerical results are compared with each other and some former results by calculating discrete root mean square and maximum error norms in each case. A matrix stability analysis is also performed by determining eigenvalues of the coefficient matrices numerically.FindingsNumerical results show that differential quadrature methods based on cubic B‐splines generate acceptable solutions of nonlinear Burgers' equation. Constructing hybrid algorithms containing various basis to determine the weighting coefficients for higher order derivative approximations is also possible.Originality/valueNonlinear Burgers' equation is solved by cubic B‐spline differential quadrature methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.