Abstract

Cube octameric silsesquioxanes (COSS) are among the smallest nanoparticles known to date with a diameter of only 0.7 nm. We describe a COSS-based delivery system which allows for the drug targeting in human cells. It comprises a siloxane core with seven pendant aminopropyl groups and a fluorescently labeled peptidic ligand attached to one cage corner via a reversible disulfide bond to ensure its intracellular release. Bimodal amplitude-modulated atomic force microscopy (AFM) experiments revealed the formation of dendritic COSS structures by a self-assembly of single particles on negatively charged surfaces. Nuclear targeting was demonstrated in HeLa cells by selective binding of released p21(Cip1/Waf1)-derived cargo peptide to PCNA, a protein involved in DNA replication and repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call