Abstract

AbstractWe construct free abelian subgroups of the group U(AΓ) of untwisted outer automorphisms of a right-angled Artin group, thus giving lower bounds on the virtual cohomological dimension. The group U(AΓ) was studied in [5] by constructing a contractible cube complex on which it acts properly and cocompactly, giving an upper bound for the virtual cohomological dimension. The ranks of our free abelian subgroups are equal to the dimensions of principal cubes in this complex. These are often of maximal dimension, so that the upper and lower bounds agree. In many cases when the principal cubes are not of maximal dimension we show there is an invariant contractible subcomplex of strictly lower dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.