Abstract

With the burgeoning interest in cage motifs for bioactive molecule discovery, and the recent disclosure of 1,4-cubane-dicarboxylic acid impact sensitivity, more research into the safety profiles of cage scaffolds is required. Therefore, the impact sensitivity and thermal decomposition behavior of judiciously selected starting materials and synthetic intermediates of cubane, bicyclo[1.1.1]pentane (BCP), and bicyclo[2.2.2]octane (BCO) were evaluated via hammer test and sealed cell differential scanning calorimetry, respectively. Iodo-substituted systems were found to be more impact sensitive, whereas hydroxymethyl substitution led to more rapid thermodecomposition. Cubane was more likely to be impact sensitive with these substituents, followed by BCP, whereas all BCOs were unresponsive. The majority of derivatives were placed substantially above Yoshida thresholds-a computational indicator of sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call