Abstract

The production of green H2 through water electrolysis processes has become a prominent technology to deal with energy and environmental crisis worldwide. The total energy consumption of electrolysis processes can be reduced by the development of low-cost electrocatalysts. In this paper, we report first time the synthesis of a highly efficient 2D CuAl LDH electrocatalyst to produce the green H2. The electrocatalyst was characterized with the help of various analytical instruments such as FT-IR, XRD, BET, TGA, ICP-OES, and XPS. The morphological characterization was done by SEM and TEM. The electrochemical characterization such as CV, LSV, Tafel plot, and EIS was done in acidic, basic, seawater, and alkaline seawater medium. It was found that CuAl LDH electrocatalyst exhibits a good current density of 100 mA/cm2 at a potential of 1.178 V in acidic medium and 10 mA/cm2 at 1.114V in seawater medium. It was investigated that the CuAl LDH behaves as a bifunctional electrocatalyst and exhibits excellent HER and OER activity in an acidic medium. The effect of temperature on the efficiency of the electrocatalyst under the above electrolyte mediums was also studied. The electrochemical data suggests that the CuAl LDH electrocatalyst can be utilized in an alkaline/PEM electrolyzer to produce the green H2 at an industrial scale with optimum cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call