Abstract
The active site of nitrous oxide reductase (N2OR), a key enzyme in denitrification, features a unique μ4-sulfido-bridged tetranuclear Cu cluster (the so-called CuZ or CuZ* site). Details of the catalytic mechanism have remained under debate and, to date, synthetic model complexes of the CuZ*/CuZ sites are extremely rare due to the difficulty in building the unique {Cu4(μ4-S)} core structure. Herein, we report the synthesis and characterization of [Cu4(μ4-S)]n+ (n = 2, 2; n = 3, 3) clusters, supported by a macrocyclic {py2NHC4} ligand (py = pyridine, NHC = N-heterocyclic carbene), in both their 0-hole (2) and 1-hole (3) states, thus mimicking the two active states of the CuZ* site during enzymatic N2O reduction. Structural and electronic properties of these {Cu4(μ4-S)} clusters are elucidated by employing multiple methods, including X-ray diffraction (XRD), nuclear magnetic resonance (NMR), UV/vis, electron paramagnetic resonance (EPR), Cu/S K-edge X-ray emission spectroscopy (XES), and Cu K-edge X-ray absorption spectroscopy (XAS) in combination with time-dependent density functional theory (TD-DFT) calculations. A significant geometry change of the {Cu4(μ4-S)} core occurs upon oxidation from 2 (τ4(S) = 0.46, seesaw) to 3 (τ4(S) = 0.03, square planar), which has not been observed so far for the biological CuZ(*) site and is unprecedented for known model complexes. The single electron of the 1-hole species 3 is predominantly delocalized over two opposite Cu ions via the central S atom, mediated by a π/π superexchange pathway. Cu K-edge XAS and Cu/S K-edge XES corroborate a mixed Cu/S-based oxidation event in which the lowest unoccupied molecular orbital (LUMO) has a significant S-character. Furthermore, preliminary reactivity studies evidence a nucleophilic character of the central μ4-S in the fully reduced 0-hole state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.