Abstract

Chalcogenide-based semiconductor–metal heterostructures are interesting catalysts for solar-to-chemical energy conversion, but current compositions are impractical due to the relative toxicity and/or scarcity of their constituent elements. To address these concerns, Cu2ZnSnS4 (CZTS) emerged as an interesting alternative to other chalcogenide-based semiconductors; however, the fabrication of CZTS-metal heterostructures remains unexplored. In this paper, we systematically explore four methods of synthesizing CZTS-Au heterostructures, specifically: reaction of CZTS nanorods with either a soluble molecular gold precursor (AuCl3) or preformed gold (Au) nanoparticles, each under thermal (heating in the dark) or photochemical reaction conditions (350 nm lamp illumination at room temperature). We find that using AuCl3 under thermal deposition conditions results in the most well-defined CZTS-Au heterostructures, containing >99% surface-bound 2.1 ± 0.5 nm Au islands along the whole length of the nanorod. These CZTS...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.