Abstract
In this work, the processing of Cu2ZnGeS4 (CZGS) thin films by a thermal evaporation technique starting from CuS, GeS and ZnS precursors, and post-deposition thermal processing, is discussed. Batches of films with GeS layers of varying thicknesses are deposited in order to study the role of Ge concentration on the structural, morphological, optical and electrical properties of CZGS films. The formation of the CZGS compound with a tetragonal phase and a kesterite structure is confirmed for all samples using XRD and Raman studies. An improvement in crystallite size for Ge-poor films is also observed in the XRD analysis, which is in good agreement with the grain size observed in the cross section SEM image. Furthermore, it is found that the band-gap of CZGS film can be tailored in the range of 2.0–2.23 eV by varying Ge concentration. A comprehensive electrical characterization is also performed which demonstrates that slightly Ge-poor samples are described by the lowest grain boundary defect densities and the highest photosensitivity and mobility values. A study of the work function of CZGS samples with different Ge concentrations is also presented. Finally, a theoretical evaluation is presented, considering, under ideal conditions, the possible impact of these films on device performance. Based on the characterization results, it is concluded that Ge-poor CZGS samples deposited by thermal evaporation present better physical properties for device applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.