Abstract

[Cu2(ox)(dien)2](NO3)3 with (ox=oxalate, dien=diethylenetriamine) has been synthesized and characterized by single-crystal X-ray diffraction as well as FTIR and UV–Vis spectroscopic techniques. The complex crystallizes in the monoclinic space group (P2/c) with the following cell parameters (Å, °): a = 23.7888(10), b = 6.7055(3), c = 12.7842(6) and β = 95.534(2). The 3D network consists of (C2O4) groups bridging binuclear Cu(II) cations, in which the copper atoms are in a distorted square-pyramidal coordination environment. Experimental and computed FT-IR results confirmed the presence of characteristic bands of diethylenetriamine tridentate, nitrate and oxalate bidentate groups. UV–Vis spectrum of the complex was recorded and the characteristic transitions were determined. TG-DSC measurements revealed thermal stability of the studied complex until 473 K. Calcination of the complex under air led to the production of CuO nanoparticles. Moreover, the morphology and the size of the complex and its CuO nanoparticles were monitored by scanning electron microscopy (SEM). Magnetization and a.c. susceptibility were measured and discussed. The complex molecular structure was optimized and the simulated geometric parameters compared with the crystal structure values. Hirshfeld surface and topological analyses were performed to describe the intermolecular interactions and to simplify the 3D networks of [Cu2(ox)(dien)2](NO3)3. Moreover, its antioxidant activity was assessed using DPPH, ferric reducing power tests and phosphomolybdenum assay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.