Abstract

Successful geophysical exploration projects in the Gucheng–Yaxi area located in Gaochun District, Jiangsu Province, China, have been limited partly due to the complex geological conditions of the area and high artificial noise in data acquired using electrical and electromagnetic methods. In this study, we deployed the new anti-interference spread-spectrum-induced polarization method (SSIP) and the audio-magnetotelluric (AMT) method to detect a copper–polymetallic deposit in the area. Two-dimensional inversion results in the Gucheng–Yaxi area revealed a high chargeability anomalous zone on the SSIP profile that coincided with a zone of moderate resistivity located between two resistor bodies on the AMT profile. A follow-up 1200 m drill hole was established at this high-chargeability, moderate-resistivity zone which encountered polymetallic (copper, lead, zinc, gold, and silver) mineralization at a depth of ≥400 m. Drill hole data analysis showed that mineralization occurred interspaced in the marble rock mass at varying depths. Furthermore, several low-resistivity, weak-chargeability sections were revealed and attributed to Cretaceous sediments and faults. These faults are thought to have played a critical role in the polymetallic mineralization genesis. In summary, this study demonstrated the successful of application of SSIP and AMT in detecting a metallic deposit in an area with high artificial noise. Hence, the geophysical prospection potential of the Gucheng–Yaxi area is great.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.