Abstract

AbstractDespite the burgeoning demand for fluorine‐containing chemical entities, the construction of CF3‐containing stereogenic centers has remained elusive. Herein, we report the strategic merger of CuI/base‐catalyzed enolization of an α‐CF3 amide and Pd0‐catalyzed allylic alkylation in an enantioselective manner to deliver chiral building blocks bearing a stereogenic carbon center connected to a CF3, an amide carbonyl, and a manipulable allylic group. The phosphine complexes of CuI and Pd0 engage in distinct catalytic roles without ligand scrambling to render the dual catalysis operative to achieve asymmetric α‐allylation of the amide. The stereoselective cyclization of the obtained α‐CF3‐γ,δ‐unsaturated amides to give tetrahydropyran and γ‐lactone‐fused cyclopropane skeletons highlights the synthetic utility of the present catalytic method as a new entry to non‐racemic CF3‐containing compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.