Abstract
Copper alloyed with various compositions of nickel and tin were cast into molds under argon atmosphere. The cast rods were homogenized, solution heat treated, followed by aging for different time duration. The specimens were characterized for microstructure and tested for microhardness and wear rate. A hybrid model with a linear function and radial basis function was developed to analyze the influence of nickel, tin, and aging time on the microhardness and tribological behavior of copper-nickel-sin alloy system. The results indicate that increase in the composition of nickel and tin increases the microhardness and decreases the wear rate of the alloy. The increase in the concentration of nickel and tin decreases the peak aging time of the alloy system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.