Abstract

Grain-oriented Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 (PMN-PZ-PT) based ceramics were synthesized through templated grain growth via using BaTiO3 (BT) templates. Although BT templates are partially destroyed by PMN-PZ-PT matrix, CuO addition remarkably promotes [001]c-oriented grain growth behavior of the ceramics, resulting in an improvement of Lotgering factor F001 from ~86% to 98%. Both crystallographic texture and CuO doping increase tetragonality and reduce average domain size of the ceramics dominated by rhombohedral phase. Consequently, 0.50 wt% CuO-doped ceramics (F001~98%) exhibit optimum electromechanical properties: d33~860 pC/N, d33×g33~48.6 × 10−12 m2/N, kp~0.80, Ec~7.2 kV/cm, tan δ~0.8% and Tc~222 °C. In addition to ~3.7 times and 6.6 times higher d33 and d33×g33, those ceramics possess about 240% enhanced piezoelectric strain and much better thermal stability (Smax/Emax variation ≤2% between RT and 150 °C) relative to non-textured counterpart. This work offers a good paradigm for simultaneously exploring high piezoelectric response and good temperature stability in piezoceramics, benefiting the development of next-generation advanced electromechanical devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call