Abstract

Redox properties of metallothioneins (MTs) and Cu in the cytosol from Long–Evans Cinnamon (LEC) rat livers 13 weeks after birth were investigated. MTs from LEC rat livers contain 8 g atoms of Cu and 1 g atom of Zn per mole of protein (Cu(I)8-MTs). Titration of Cu(I)8-MTs with CuCl2 indicates that Cu(I)8-MTs were able to reduce further 2-g atoms of cupric ions per mole MTs as bound form. Hg2+-induced hydroxyl radical generation from Cu(I)8-MTs was demonstrated by ESR using the spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The intensity of DMPO-OH signal from Cu-loaded MTs was increased with the increasing number of Cu in MTs. The used cytosol fraction contained 1.37 mM total Cu and 5 mM DTNB titrable-SH groups has a potential to reduce 2 mM CuCl2. No ESR signal due to Cu2+ was also detected with LEC rat liver cytosol, whereas strong Cu2+ signal appeared by the addition of HgCl2. The rate constants for the reaction of Cu(I)8-MTs with superoxide and hydroxyl radicals were estimated to be 2 × 106 and ≥1012 M−1s−1, respectively, from competition kinetics. Cu2+-catalyzed oxidation of DNA was strongly inhibited both in the presence of Cu-unsaturated MTs and GSH. The results suggest that Cu(I)8-MTs from LEC rat livers just before hepatitis still act as antioxidants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call