Abstract

The fast NH3-SCR kinetics are studied on Cu/SSZ-13 with different Cu loadings, under reaction conditions (temperature and space velocity) where both steady-state and differential NOx conversions are readily achieved. Cu loading is found to greatly influence low-temperature NOx turnover rates, however not to substantially affect apparent activation energies. The high reaction apparent activation energies (~ 160 kJ/mol) suggest that the rate-limiting kinetics for fast SCR involve the participation of NH4NO3, an intermediate that is of considerable stability in small-pore zeolites. The energetically demanding NH4NO3 + NO reactions make low-temperature fast SCR much slower than standard SCR over Cu-exchanged small-pore zeolite catalysts, in drastic contrast to vanadium and medium/large pore zeolite-based SCR catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.