Abstract

Low-temperature ore deposits exhibit a large variation in δ 65Cu (~ 12‰), and this range has been attributed, in part, to isotope fractionation during weathering reactions of primary minerals such as chalcocite and chalcopyrite. Here, we examine the fractionation of Cu isotopes during dissolution of another important Cu ore mineral, bornite, using a novel approach that combines time-resolved X-ray diffraction (XRD) and isotope analysis of reaction products. During the initial stages of bornite oxidative dissolution by ferric sulfate (< 5 mol% of total Cu leached), dissolved Cu was enriched in isotopically heavy Cu ( 65Cu) relative to the solid, with an average apparent isotope fractionation (Δ aq − min = δ 65Cu aq − δ 65Cu min 0) of 2.20 ± 0.25‰. When > 20 mol% Cu was leached from the solid, the difference between the Cu isotope composition of the aqueous and mineral phases approached zero, with ∆ aq − min 0 values ranging from − 0.21 ± 0.61‰ to 0.92 ± 0.25‰. XRD analysis allowed us to correlate changes in the atomic structure of bornite with the apparent isotope fractionation as the dissolution reaction progressed. These data revealed that the greatest degree of apparent fractionation is accompanied by a steep contraction in the unit-cell volume, which we identified as a transition from stoichiometric to non-stoichiometric bornite. We propose that the initially high ∆ aq − min values result from isotopically heavy Cu ( 65Cu) concentrating within Cu 2+ during dissolution. The decrease in the apparent isotope fractionation as the reaction progresses occurs from the distillation of isotopically heavy Cu ( 65Cu) during dissolution or kinetic isotope effects associated with the depletion of Cu from the surfaces of bornite particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.