Abstract

Gd3+-doped quantum dots (QDs) have been widely used as small-sized bifunctional contrast agents for fluorescence/magnetic resonance (FL/MR) dual-modality imaging. However, Gd3+ doping will always compromise the FL of host QDs. Therefore, balancing the Gd3+ doping and the optical properties of QDs is crucial for constructing high-performance bifunctional nanoprobes. Additionally, most paramagnetic QDs are synthesized in the organic phase and need to be transferred to the aqueous phase for bioimaging. Herein, ingeniously designed shell-doped Cu-In-S/ZnS:Gd3+ QDs have been prepared in the aqueous phase. It has been demonstrated that isolating paramagnetic Gd3+ from fluorescent Cu-In-S core via doping Gd3+ into ZnS shell not only avoided the decrease of FL quantum yield (QY), but also ensured the water accessibility of paramagnetic Gd3+ ions, by which the FL QY and r1 relaxivity of Cu-In-S/ZnS:Gd3+ QDs achieved as much as 15.6% and 15.33 mM-1·s-1, respectively. These high-performance QDs with excellent stability, low biotoxicity, and good tumor permeability were successfully applied for in vivo tumor FL/MR dual-modality imaging, and have shown significant potential in the precision detection and diagnosis of diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.