Abstract

In the present study, Cu (II) ions removal from aqueous solution was intensified by exciting magnetic nanoparticles under inert gas, magnetic field and combination of these two mixing methods in a T-type microchannel. The flow patterns and liquid–liquid two-phase mass transfer were studied in three different magnet distances from mixing channel (3, 6 and 10 mm) and also in the presence of different inert gas flow rates (1, 3 and 5 mL/min). Depending on the mixing method and the flow rate of both phases, several distinct flow patterns were observed including slugs, droplet, parallel and dispersed flows. The performances of mixing techniques for mass transfer enhancement based on relative removal efficiency ratio (λ) and mass transfer coefficient ratio (γ) were compared with simple layout (without nanoparticles, magnetic field and inert gas). The results showed that simultaneous using of inert gas and magnetic field can drive the nanoparticles as mixer. Liquid–liquid mass transfer with 27–62% enhancement in E and 235–285% in K L a compared with plain one was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call