Abstract

A hydrazone ligand, (E)-6-(2-((2-hydroxynaphthalen-1-yl)methylene)hydrazinyl)nicotinohydrazide (H2L), was synthesized and characterized by spectroscopic methods. The reaction of H2L with CuCl2·2H2O in methanol gave Cu(II) coordination compound, [Cu(HL′)(Cl)]·CH3OH (1), which was characterized by elemental analysis and spectroscopic methods (Fourier transform infrared (FT-IR) and UV–vis). The structure of 1 was also determined by single-crystal X-ray analysis. Structural studies confirmed the formation of esteric group during the synthesis of 1. Compound 1 was immobilized on 3-aminopropyltriethoxysilane (APTS)-functionalized silica gel through the amidification reaction and the obtained heterogeneous coordination compound was utilized as a catalyst for the three-component azide–epoxide–alkyne cycloaddition reaction in water as a green solvent. The structural properties of the heterogeneous catalyst were characterized by a combination of FT-IR, UV–vis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) analyses. The effect of the amount of catalyst and temperature on the cycloaddition reaction was studied, and the obtained 1,2,3-triazoles were characterized by spectroscopic studies and single-crystal X-ray analysis. The catalytic investigations revealed that this catalytic system has high activity in the synthesis of β-hydroxy-1,2,3-triazoles. It was also found that the aromatic and aliphatic substituents on the alkyne and epoxide together with the reaction temperature have considerable effects on the activity and regioselectivity of this catalytic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.