Abstract

Two novel fluorescent probes for Cu2+ detection have been developed based on thiazoline-quinoline conjugates bearing a 4-ethynyl-N,N-dimethylaniline unit (QT1 and QT2). QT2 exhibits instantaneous fluorescence quenching of Cu2+ with an emissive change from bright orange to arctic blue under UV light irradiation (365 nm). The plots of I0/I against Cu2+ concentrations show a good linear relationship that ranges from 0 to 50 µM with a coefficient of determination (R2) = 0.9906 and a limit of detection (LOD) of 76 nM, which is considered low (4.84 ppb). A 1:1 complexation between QT2 and Cu2+ was confirmed by UV–Vis titration, ESI-MS, and SC-XRD. The QT2·Cu2+ complex was dissociated by the addition of EDTA. The fluorescence quenching mechanism involves the ligand-to-metal charge transfer (LMCT) of a paramagnetic Cu2+ complex. The QT2 probe on a paper-based strip was used to determine the amount of Cu2+ in water and food samples (shiitake mushrooms and oysters).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.