Abstract

The synthesis, characterization and catalytic performance of chiral Cu(II) complexes derived from N-carboxymethylated and N-carboxyethylated amino acids is reported. The ligand precursors are prepared by single step N-alkylation of the sodium salts of the appropriate chiral amino acid with either sodium chloroacetate or sodium 3-chloropropionate in water. The Cu(II) complexes are obtained upon reaction of Cu(CH3COO)2 with the aqueous or alcoholic suspension of the suitable ligand under vigorous stirring or ultrasound irradiation at room temperature. The Cu(II) compounds are characterised by EPR, UV–vis, circular dichroism and ESI-MS. The molecular structures of two of the prepared complexes are also obtained by single-crystal X-ray diffraction analysis. The catalytic activity of the complexes in the asymmetric oxidative coupling of 2-naphthol is described. All compounds exhibit moderate activity, selectivity and enantioselectivity in ethanol/water mixtures, under aerobic conditions and using potassium iodide as additive. The yields of 1,1′-bi-2-naphthol (BINOL) reached 50% under the optimal conditions, while enantiomeric excesses reached ca. 48%. The effect of variables such as ligand substituents, solvent, temperature and additives on the catalytic activity is also described. In the absence of a base, the complexes only show catalytic activity in the presence of alkali metal iodide such as KI. Details of the oxidative coupling mechanism are studied using spectroscopic and electrochemical methodologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.