Abstract

Doping at the Mn-site in CMR manganate-based perovskites has been shown to affect strongly the physical properties of those compounds. We study here the effect of copper substitution in the low doping range on the electrical transport properties of La0.7Ca0.3MnO3. It turns out that the transition temperature decrease observed in doped samples can be drastically reduced by addition of silicon dioxide SiO2. It is shown that copper is trapped in a secondary phase composed of La,Ca,Si,Cu and O. The resultant Mn-site vacancies appear to be less detrimental to the electronic conduction than the likely antiferromagnetic clusters induced by the copper ions in the Mn-O network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call