Abstract

Abstract Cu-doped TiO2 having a brookite phase and showing enhanced visible light photocatalytic activity was synthesized using a mild solvothermal method. The as-prepared samples were characterized by various techniques, such as X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy. Photocatalytic activity of Cu-doped brookite TiO2 nanoparticles was evaluated by photodegradation of methylene blue under visible light irradiation. The X-ray diffraction analysis showed that the crystallite size of Cu-doped brookite TiO2 samples decreased with the increase of Cu concentration in the samples. The UV-Vis diffuse reflectance spectroscopy analysis of the Cu-doped TiO2 samples showed a shift to lower energy levels in the band gap compared with that of bare phase brookite TiO2. Cu doped brookite TiO2 can obviously improve its visible light photocatalytic activity because of Cu ions acting as electron acceptors and inhibiting electron-hole recombination. The brookite TiO2 sample with 7.0 wt.% Cu showed the highest photocatalytic activity and the corresponding degradation rate of MB (10 mg/L) reached to 87 % after visible light illumination for 120 min, much higher than that of bare brookite TiO2 prepared under the same conditions (78 %).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call