Abstract

This study reports the successful preparation of Cu-doped hematite (α-Fe2O3) flower-like nanostructures with different Cu concentrations on FTO glass substrates using a facile hydrothermal method. The Cu-doped α-Fe2O3 flower-like nanostructure combines the advantage of p-type doping with the feature of a flower-like architecture. The prepared nanostructure film was applied as a photocathode in a photoelectrochemical (PEC) water splitting experiment and achieved a significantly improved photocurrent density of −5.34mAcm−2 at −0.6V vs. reversible hydrogen electrode (RHE) for 1mol% Cu doping. The obtained photocurrent is about 4.85 times higher than that of the pure α-Fe2O3 based photoelectrode. The incorporation of Cu into α-Fe2O3 results in a dramatic enhancement in the water splitting performance. The enhancement is gained through an improvement in light harvesting and charge carrier separation. The copper-modified α-Fe2O3 sample also exhibited an up shift in the conduction band edge potential, which is energetically favorable for the water reduction reaction. This result demonstrated high performance PEC water splitting as a potential route for the production of hydrogen gas using a single Cu-doped α-Fe2O3 photoelectrode without the need for other catalysts and hybrid structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.