Abstract

Metallic copper nanoparticle (Cu NP)-doped 1D hydroxyapatite was synthesized using a simple chemical reduction method. To describe the structure and composition of the Cu/HAP nanocomposites, physicochemical techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma, N2 adsorption–desorption, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy were used. The TEM scan of the Cu/HAP nanocomposite revealed a rod-like shape with 308 nm length and 117 nm width on average. The catalytic activity of Cu/HAP nanocomposites for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 has been thoroughly investigated. The 0.7% Cu/HAP nanocomposite was shown to have superior catalytic activity than the other nanocomposites, converting 4-NP to 4-AP in ∼1 min with good recyclability. Moreover, this nanocomposite showed excellent catalytic performance in the organic dye reduction such as Congo red and acriflavine hydrochloride dyes. The high dispersion of Cu NPs on HAP support, the high specific surface area, and the small Cu particles contributed to its remarkable catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.