Abstract

In this work, novel Cu–Co bimetal/reduce graphene oxide nanostructures with excellent catalytic activity were prepared by embedding Cu–Co bimetallic nanospheres into the interlayer of graphene. The composite materials were characterised by X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) etc. The characterisation results indicated that the diameters of the bimetallic nanospheres were controlled within ∼60 nm, which embedded uniformly in graphene. A series of electrochemical tests were carried out and the composites were found to exhibit excellent oxygen evolution properties under alkaline conditions. The excellent catalytic activity and stability make the composite have great potential for wide application and provide a basis for its industrial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.