Abstract

Catalytic systems designated for preferential oxidation of CO in the presence of H2 are prepared by ball milling of Cu and CeO2, a simple and cheap one-step process to synthesize such catalysts. It is found that after 60 min of milling, a mixture of 8 wt.% Cu–CeO2 powders exhibits CO conversion of 96% and CO selectivity of about 65% at 438 K. Two active oxygen states, which are not observed in case of pure CeO2, were detected in the nanocomposite lattice and attributed to the presence of Cu in surface sites as well as in subsurface bulk sites. Correspondingly, oxidation of CO to CO2 was found to occur in a two-stage process with T max ≈ 395/460 K, and oxidation of H2 to H2O likewise in a two-stage process with T max ≈ 465/490 K. The milled powder consists of CeO2 crystallites sized 8–10 nm agglomerated to somewhat larger aggregates, with Cu dispersed on the surface of the CeO2 crystallites, and to a lesser extent present as Cu2O.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.