Abstract

Sol-gel auto-combustion synthesized Co1-xCuxFe2-yCeyO4 (x = 0.0, 0.25, 0.5 and 0.75; y = 0.0, 0.03, 0.06, and 0.09), Cu–Ce substituted Co ferrite nanopowders. Investigations have been done on how Cu–Ce substitution affects the structural and magnetic characteristics. The Cu–Ce substitution variation effect on structural and magnetic properties is studied with X-ray diffraction (XRD), Field effect scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), and Vibrating sample magnetometer (VSM). The XRD was used to identify the crystal phase, and the role of Cu–Ce substituted for Co indicates how it formed. There is no change in the crystal structure, and no additional characteristic peak linked to Cu2+ and Ce3+ ions substitution was found in the XRD. The powder was sintered at 1100 °C. The crystallite sizes were found in between 33 and 62 nm. Increasing the Cu–Ce content decreases the lattice constant and is found between 8.4044 and 8.3309 Å. The FESEM images were used to analyze the nanostructural properties. The range of 110–128 nm is the value of average grain size. Two vibrational bands can be seen in FTIR spectra at about 600 cm−1 (v1) and 400 cm−1 (v2). They are attributed to the spinel lattices A and B sites, respectively. The tetrahedral site has a greater vibrational frequency of 566.09 cm−1, while the octahedral site has a lower vibrational frequency of 420.09 cm−1. FTIR spectra show the tetrahedral stretching peaks shifting towards lower frequencies with increasing Cu2+ and Ce3+ ions content. At ambient temperature, the magnetic properties of Cu–Ce substituted cobalt ferrites revealed a strong hysteresis loop. There was a decrease in magnetic saturation and an increase in coercivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call